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Abstract 

This note details a complete microeconomic characterization of the physical relationships 

between input use and the level of output of a simple point-to-point gas pipeline system 

and uses it to contribute to the public policy discussions pertaining to the economic 

regulation of natural gas pipelines. We show that the engineering equations governing the 

design and operations of that infrastructure can be approximated by a single production 

equation of the Cobb-Douglas type. We use that result to inform three public policy 

debates. First, we prove that the long-run cost function of the infrastructure formally 

verifies the condition for a natural monopoly, thereby justifying the need of regulatory 

intervention in that industry. Second, we examine the conditions for cost-recovery in the 

short-run and contribute to the emerging European discussions on the implementation of 

short-run marginal cost pricing on interconnector pipelines. Lastly, we analyze the 

performance of rate-of-return regulation in that industry and inform the regulatory policy 

debates on the selection of an appropriate authorized rate of return. We highlight that, 

contrary to popular belief, the socially desirable rate of return can be larger than the market 

price of capital for that industry. 
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1. Introduction 

The last 30 years have seen an enduring interest in the construction of large-scale natural gas 

pipelines across the globe. Though an emerging literature has studied the market effects of a new 

pipeline project,1 the examination of the technology and costs of these capital-intensive infrastructures 

has attracted less attention. Yet, that analysis is critically needed to inform policy development and 

decisions. Even in countries where liberalization reforms have been implemented, natural gas pipelines 

remain regulated (von Hirschhausen, 2008) and authorities must frequently deal with project-specific 

requests for adjustments within the regulatory framework.2  

So far, two different methodological approaches have been considered to investigate the 

technology. The first is rooted in engineering and can be traced back to Chenery (1949). It aims at 

numerically determining the least-cost design of a given infrastructure using optimization techniques 

(Kabirian and Hemmati, 2007; Ruan et al., 2009; André and Bonnans, 2011). This approach is widely 

applied by planners and development agencies to assess the cost of a specific project (Yépez, 2008). 

Yet, because of its sophistication and its numerical nature, it is seldom considered in regulatory policy 

debates (Massol, 2011). The second approach involves the econometric estimation of a flexible 

functional form – usually a translog specification – to obtain an approximate cost function. This method 

has become popular in Northern America either to estimate the industry cost function using cross-

section datasets (Ellig and Giberson, 1993) or to model the cost function of a single firm using a time 

series approach (Gordon et al., 2003). So far, data availability issues have hampered the application of 

this empirical approach in Continental Europe and Asia. 

This research note develops a third approach: it proves that a production function of the Cobb-

Douglas type captures the physical relationship between input use and the level of output of a simple 

point-to-point pipeline infrastructure. More precisely, we show how that micro-founded model of the 

                                                 
1 Among others, Newbery (1987) assesses the trade opportunities generated by a new pipeline, Hubert and Ikonnikova (2011) 

evaluate the impacts on the relative bargaining powers of exporting and transit countries, and Rupérez Micola and Bunn 

(2007) and Massol and Banal-Estañol (2016) investigated the relation between pipeline utilization and the degree of spatial 

market integration between interconnected markets. 

2 For example, the augmented rate-of-return that was allocated to two new pipeline projects in France during the years  

2009–16: the pipeline connecting the new Dunkerque LNG terminal to the national transportation network and the North-

South Eridan project (CRE, 2012). 
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technology naturally emerges from the engineering equations governing the design of that 

infrastructure. One of the great merits of that approach is that it greatly facilitates the application of the 

standard theory of production to characterize the microeconomics of a natural gas pipeline system.  

To explore the policy implications, we use that production function to successively examine the 

properties of the cost function in the long and in the short run. We also compare the market outcomes 

obtained under three alternative conditions of industrial organization (unregulated private monopoly, 

average-cost pricing, and rate-of-return regulation). Our results: (i) indicate the presence of pronounced 

increasing returns to scale in the long run; (ii) confirm the natural monopolistic nature of a gas pipeline 

system and the need for regulatory intervention; (iii) clarify the conditions for cost-recovery if short-run 

marginal cost pricing is imposed on such infrastructure; (iv) quantify the performance of rate-of-return 

regulation in that industry, and (v) reveal that the socially desirable rate of return is not necessarily 

equal to the market price of capital in this case. 

2. Theoretical model of the technology 

We consider a simple point-to-point pipeline infrastructure that consists of a compressor station 

injecting a pressurized flow of natural gas Q  into a pipeline to transport it across a given distance l .  

Following Chenery (1949) and Yépez (2008), designing such a system imposes to determine the 

value of three engineering variables: the compressor horsepower H , the inside diameter of the pipe D  

and τ  the pipe thickness. These variables must verify three engineering equations presented in Table 1 

(first column). The compressor equation gives the power required to compress the gas flow from a 

given inlet pressure 0p  to a predefined outlet pressure 0p p+ ∆  where p∆  is the net pressure rise. The 

Weymouth equation models the pressure drop between the inlet pressure 0p p+ ∆  measured after the 

compressor station, and the outlet one 1p , which is assumed to be equal to 0p . Lastly, concerns about 

the mechanical stability of the pipe impose a relation between the thickness τ  and the inside diameter 

D . 
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Table 1. Engineering equations 

Exact engineering equations Approximate engineering equations 

Compressor equation: 
(a)

 Approximate compressor equation: 
(a)
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p p
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∆=               

Weymouth flow equation: 
(b)

 Approximate flow equation: 
(b)

 

      ( )28/3 22
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c
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l
= + ∆ −                    8/32 0
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2c p p
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∆=              

Mechanical stability equation: 
(c)

 Mechanical stability equation: 
(c)

 

      3c Dτ =                                                        3c Dτ =                                                  

Notes: (a) (b) the positive constant parameters 1c , 2c  and b  (with 1b< ) are detailed in Yépez (2008) for the USCS unit 

system. Elevation changes along the pipeline are neglected in the flow equation. (c) This equation follows the industry-

standard practice and assumes that the pipe thickness equals a predetermined fraction 3c  of the inside diameter (e.g.,  

3c =0.9% in Ruan et al. (2009 – p. 3044)). 

We now combine these equations to construct an approximate production function. To our 

knowledge, the pressure rise p∆  usually ranges between 1% and 30% of 0p , which leads to the first-

order approximations detailed in Table 1 (second column). Combining them, one can eliminate the 

relative pressure rise 0p p∆  and obtain the following relation between the output Q  and two 

engineering variables H  and D :  

( )2

2 0 16/9 1/33

1

2 c p
Q D H

c bl
= .       (1) 

This relation can be reformulated as a production function that gives the output as a function of 

two inputs: energy and capital. First, we let E  denote the total amount of energy consumed by the 

infrastructure to power the compressor. By definition, the total amount of energy E  is directly 

proportional to the horsepower H . Second, we let K  denote the replacement value of the pipeline. We 

assume that the capital stock K  is directly proportional to the pipeline total weight of steel S  and let SP  

denote the unit cost of steel per unit of weight. Hence, SK P S= . The total weight of steel S  required to 

build that pipeline is obtained by multiplying the volume of steel in an open cylinder by the weight of 

steel per unit of volume SW : 
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2 2

2 2 S

D D
S l Wπ τ

    = + −    
     

,      (2) 

where 3.1416π ≈  is the mathematical constant. Combining that equation with the mechanical stability 

equation in Table 1, the amount of capital expenditure related to the pipeline is as follows: 

2 2
3 3S SK P l D c c Wπ  = +  .       (3) 

This equation shows that the pipeline diameter is directly proportional to the square root of K , the 

amount of capital invested in the pipeline. So, the engineering equation (1) can readily be rewritten as a 

production function: 8 9 1 3Q B K E= , where B  is a constant. To simplify, we rescale the output by 

dividing it by B  and use this rescaled output thereafter. So, the Cobb-Douglas production function of a 

gas pipeline is: 

1Q K Eβ α α−= ,         (4) 

where the capital exponent parameter is 8 11α =  and 9 11β =  is the inverse of the degree to which 

output is homogeneous in capital and energy. As 1β < , the technology exhibits increasing returns to 

scale.  

3. Results and policy implications 

In this section, we show how the technological model above can be applied to derive several policy-

relevant insights. Since natural gas pipelines are deemed as natural monopolies, we first examine 

whether that reputation is supported by the properties of the long-run cost function. We then examine 

the short-run cost function to assess the performance of short-run marginal cost pricing. Lastly, we 

assess the performance of rate-of-return regulation for that industry.  

3.1 Long-run cost 

We let e denote the market price of the energy input and r  the market price of capital faced by the 

firm. From the cost-minimizing combination of inputs needed to transport the output Q , one can derive 

the long-run total cost function (Cf., Appendix A):  

( )
( )

1

1
1

r e
C Q Q

α α
β

ααα α

−

−=
−

.       (5) 
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Three insights can be drawn from that specification. Firstly, the elasticity of the long-run cost with 

respect to output is 9 11β =  and lower than one. The cost function (5) also validates the empirical 

remarks in Chenery (1952) and Massol (2011) who suggested that this elasticity is almost constant over 

most of the output range. Secondly, the ratio of the long-run marginal cost to the long-run average cost 

is constant and also equals β . As 1β < , setting the price equal to the long-run marginal cost 

systematically yields a negative profit. Lastly, one can note that the univariate cost function (5) is 

concave and thus strictly subadditive (Sharkey, 1982 - Proposition 4.1). This property has important 

policy implications: it attests that a point-to-point gas pipeline system verifies the technological 

condition for a natural monopoly. As this particular industry structure may lead to a variety of economic 

performance problems (such as excessive prices, production inefficiencies, and costly duplication of 

facilities), the implementation of price and entry regulation of some form can be justified to mitigate the 

social cost of these market failures (Joskow, 2007). 

3.2 Short-run cost 

We now examine how cost varies in the short-run. We consider an existing infrastructure that has 

been designed to transport the output 0Q  at minimum long-run cost by installing the amount of capital 

stock 0K . The short-run total cost function is obtained by holding 0K  constant and varying the output 

Q . Introducing the variable input requirements function ( ) 1
0 0,E Q K K Qα βα −−=  that gives the amount of 

energy needed to transport Q  along that pipeline, the short-run total cost function is: 

( )0 1 1
0 0

KSRTC Q rK eK Q
α β
α α

−
− −= + .      (6) 

The technical discussion presented in Appendix B confirms that the short-run average cost 0KSRAC  

curve is U-shaped and attains its minimum at Q Q= , where Q  is the unique output at which the short-

run marginal cost curve intersects the 0KSRAC one. Solving, one can show that the output ratio 0Q Q  

verifies:  

1

3

0

4
1.1006

1 3

Q

Q

α
βα

β α

−

 = = ≈ + − 
.      (7) 
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It should be noted that this ratio is entirely determined by the technological parameters α  and β  

and does not depend on the input prices or the capital stock 0K . 

At the output level 0Q Q= , the short-run marginal cost is lower than the short-run average cost and 

expanding the output to 3
04 3Q Q=  occasions a reduction in the short-run average cost.  

It follows that, for any output Q  with Q Q< , imposing the pipeline operator to charge a price equal 

to the short-run marginal does not allow that firm to break even. This last finding can usefully inform 

the contemporary European policy debates pertaining to the regular revision of the European Gas 

Target Model (ACER, 2015). In a recent policy proposal, Hecking (2015) advocates the application of 

short-run marginal-cost pricing for cross-border interconnector pipelines in Europe. Compared to the 

current ad-hoc pricing system, one of the main merits of this pricing arrangement is to favor an efficient 

use of these infrastructures in the short-run. Yet, it should be stressed that the capital costs bulk large as 

a percentage of the total cost of a gas pipeline system. Therefore, its application on an existing 

interconnector may generate a cost-recovery issue if the output is lower than the level Q .3 For new 

interconnector projects, this pricing scheme, when considered alone, can deter investment. It could thus 

adversely impact the feasibility of a series of major European projects aimed at fostering market 

integration across the continent (such as the MidCat project proposed to connect the Iberian peninsula 

with France and the rest of Europe). This also confirms the need to combine marginal-cost pricing of 

interconnectors with other cost-recovery instruments such as network pricing to recover the remaining 

costs.  

3.3 Rate-of-return regulation 

The analysis above indicates that a pipeline has elements of a natural monopoly. As rate-of-return 

regulation4 remains a prominent instrument used by numerous authorities internationally (including the 

U.S., Belgium, and South-Africa), we now explore what insights our characterization of the technology 

can provide to regulators and practitioners.  

                                                 
3 Arguably, a share of these capital costs could be considered as sunk which could trigger a discussion as to whether these 

costs have to be recouped or not.  

4 This form of regulation sees costs as exogenous and observable and forms prices on the basis of observed variable costs and 

an authorized rate of return on invested capital s  based on an assessment of the risk-based cost of capital. 
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Following the literature (Klevorick, 1971: Callen et al., 1976), we assume the isoelastic inverse 

demand function ( )P Q A Q ε−= , where 1 ε  is the absolute price elasticity with 1ε <  (so that the total 

revenue obtained by a firm producing zero output is zero) and 1 β ε− <  (to verify the second-order 

condition for a maximum in the regulated firm’s optimization problem), and let s  denote the allowed 

rate of return set by the regulatory authority. For concision, the solution of the profit-maximization 

problem of a regulated firm whose accounting profit (i.e., the total revenue ( )P Q Q minus ( ),eE Q K  

the cost of the variable input) cannot exceed the allowed return on invested capital sK  is reviewed in a 

supporting technical appendix. 

Callen et al. (1976) examine the problem of a regulator that sets the allowed rate of return s  at the 

level Rs  that maximizes the net social welfare given the regulated firm’s reaction to that rate. They 

formally prove that this socially desirable rate is: 

( )( )
( )( )

2

2

1 1
 max ,

1 1
Rs r r

β ε α

α β α ε

  − − −  =
  − − − 

  

.      (8)  

We can use the values of α  and β  above to highlight two interesting results pertaining to the 

application of rate-of-return regulation in the gas pipeline sector. First, it is straightforward to verify 

that, whenever the demand parameter ε  is in the open interval ( )( )2 4 3 11,1+ , the condition 

( )( ) ( )( )2 2
1 1 1 1β ε α α β α ε − − − > − − −    

 holds which indicates that the socially desirable rate of return 

is ( )( ) ( )( )( )2 2
1 1 1 1Rs rβ ε α α β α ε = − − − − − −    

 and thus verifies Rs r> . Hence, if the absolute price 

elasticity is low and in the range 1 1 1.232ε< < , setting the allowed rate-of-return as close as possible to 

the market price of capital does not maximize the net social welfare. This is a noteworthy finding that 

contradicts a popular belief. Second, we can observe that the ratio Rs r  is bounded as the relation 

( ) ( )Rs r β α<  holds for any value of ε  in the assumed range 1 1β ε− < < . This remark provides 

useful operational guidance for the selection of a rate of return: if the regulator has zero information on 

the value of the price elasticity of the demand and thus cannot exactly evaluate Rs , it should not 

implement a rate of return that is larger than rβ α , that is 9 8 1.125β α = =  times the market price of 

capital r . 
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It is also instructive to evaluate the relative performance of rate-of-return regulation in the gas 

pipeline sector by comparing the market outcomes (subscripted with R ) with the ones obtained in case 

of either a standard (unregulated) private monopoly (subscripted with M ) or a benevolent social 

planner that maximizes the net social welfare while providing zero economic profit to the pipeline 

operator5 (subscripted with a as it sets the output at the level at which price equals the long-run average 

cost). To ease the comparisons, we simply tabulate the ratios presented in Callen et al. (1976) for a 

range of possible values for the demand elasticity (Cf., Table 2). These ratios are also detailed in the 

technical appendix (cf., Table TA-3) and respectively compare:  

• the output levels decided by: a private monopoly MQ , a social planner applying the average-

cost-pricing rule aQ  and a regulated monopoly RQ ;  

• the cost RC  incurred by the regulated firm subject to rate-of-return regulation and the cost 

( )RC Q  that would have been incurred by a cost-minimizing firm producing the same output 

RQ ;  

• the gain in net social welfare resulting from the regulation of a private monopoly ( )R MW W−  

and the gain in net social welfare ( )a MW W−  that would be obtained by a social planner 

applying the average-cost-pricing rule to a previously monopolistic industry. 

These ratios are invariant with the relative input prices and are entirely determined by: the demand 

and technology parameters, and the ratio s r  that relates s the allowed rate of return set by the 

regulator to r  the market price of capital (Callen et al., 1976). 

To begin with, we examine the case presented in Table 2 – Panel A of a regulatory agency that 

implements the socially desirable rate of return Rs  in (8). If the absolute price elasticity of the demand 

is less than 1.30, we observe that: (i) the output level RQ  is substantially lower than the value aQ  

obtained under the ideal case of a benevolent social planner imposing the long-run average cost pricing 

rule (it hardly attains the three quarters of that value); and (ii) the magnitude of the extra-cost caused by 

                                                 
5 Recall that marginal cost pricing would lead to a negative profit. This case thus corresponds to the second-best solution 

examined by Boiteux (1956) whereby the firm is instructed to act so as to maximize the social welfare while balancing its 

budget. 
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the overcapitalization effect pointed in Averch and Johnson (1962)6 can be important (i.e., the cost 

increase is larger than 20% of the long-run total cost and attains 378.9% in case of a price elasticity 

equal to 1.001). That said, it is worth noting that despite these two adverse effects, the application of 

rate-of-return regulation on an unregulated monopolistic operator induces a very large rise in the 

pipeline output level (cf., the large values of the output ratio R MQ Q ). Overall, that form of regulation 

generates substantial welfare gains: the net increase in social welfare ( )R MW W−  attains more than 70% 

of the difference ( )a MW W−  that measures the gains obtained under the theoretical benchmark of a 

benevolent social planner applying average-cost-pricing (i.e., the second best solution). 

As regulatory agencies seldom have complete knowledge of the price elasticity of demand needed 

to evaluate the socially desirable rate of return Rs  , Table 2 – Panel B then examines the performance 

of rate-of-return regulation when the regulator simply sets s rβ α= . By construction, the gains in 

social welfare values are lower than the ones detailed in Panel A. Yet, we observe that the differences 

remain tolerable whenever the absolute price elasticity is less than 1.50, which is likely to be the case in 

the natural gas pipeline industry. Hence, this form of regulation remains a powerful regulatory 

instrument even when the regulator simply sets the allowed rate of return s  within the range 

r s rβ α≤ ≤ . 

 

 

 

 

 

 

 

                                                 
6 The analysis of rate-of-return regulation in Averch and Johnson (1962) highlighted the tendency of the regulated firm to 

engage in excessive amounts of capital accumulation (ratebase) to expand its potential for profits. It should be noted that 

Averch and Johnson focused on the telephone industry which, at that time, mainly used two inputs: capital and labor. The 

Averch-Johnson effect is thus usually invoked as a tradeoff between capital and labor. In the present paper, the tradeoff is 

between capital and energy. 
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Table 2. Output, cost, and welfare ratios for alternative demand elasticities 
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Notes: In Panel B, the numbers in parentheses indicate the relative change (in percent) with respect to the ideal case of a 

regulator capable to set the regulated rate of return at the value Rs  in equation (8). 

4. Conclusion 

The analysis presented in this concise paper shows how the complex engineering equations 

governing the functioning of a pipeline system can be combined in a single production equation of the 

Cobb-Douglas type that is commonly applied in microeconomics.  
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This characterization of the technology of a natural gas pipeline allows us to highlight the following 

points that should be pertinent to researchers and policymakers interested in understanding the 

economics of natural gas pipelines.  

• First, the analysis assesses the magnitude of the long-run economies of scale that exists on 

point-to-point pipeline systems, thereby confirming the natural monopolistic nature of this 

infrastructure and justifying the need to implement price and entry regulation of some form 

in the industry.  

• Second, in the short-run, the analysis reveals that it is possible to monotonically lower the 

average transportation cost incurred on an existing pipeline infrastructure by expanding the 

output up to a threshold level that represents about 110% of the output that was considered 

at the time of the construction of that infrastructure. This finding has important implications 

for the applicability of short-run marginal-cost pricing, confirming that this pricing scheme 

cannot allow recovery of the capital costs incurred by the pipeline operator if output is 

lower than that threshold level.  

• Lastly, this paper combines the technological analysis with the standard industrial 

organization literature to contribute to the understanding of the performance of rate-of-

return regulation in the pipeline industry. It first reveals that, contrary to popular intuition, 

the rate of return that maximizes net social welfare can be larger than the market price of 

capital when the price elasticity of demand is low. To assist regulators, the analysis also 

provides a ceiling value for that socially desirable rate of return. Then, it also assesses the 

magnitude of the Averch-Johnson distortions on both the output and the cost of the 

regulated firm. Despite these distortions, the application of this basic form of economic 

regulation remains a valuable instrument to protect the community from monopolistic 

exploitation.  

While the present discussion is centered on the case of a simple point-to-point natural gas 

transportation infrastructure, it suggests several possibly fruitful directions for future research. First, 

future works could extend the analysis to the case of more complex natural gas trunkline systems 

forming a meshed network. Second, future research could explore whether this methodology could be 

adapted and combined with the recent engineering literature on either hydrogen pipelines (André et al., 

2013) or CO2 pipelines (Massol et al., 2015) to inform the burgeoning policy discussions on the 

regulation of these future low-carbon technologies. Lastly, one may conceivably explore whether an 
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adaptation is possible for the case of the natural gas distribution networks. At first sight, this might be 

feasible for the specific case of natural gas distribution networks equipped with local compressor 

stations but a series of issues have to be examined including: the possibly different flow equation 

governing the movement of natural gas into small diameter pipes, the role of specific cost drivers (e.g., 

to dig a trench) and the reintroduction of labor as a production factor.  
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Appendix A – The long-run cost function 

The long-run total cost function C  to transport the output Q  is the solution of the cost- 

minimization problem:  

,
Min

K E
 ( )      C Q r K e E= +   (A.1) 

s.t. 1Q K Eβ α α−=      (A.2) 
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The first-order conditions for optimality indicate that the marginal rate of technical substitution of 

E  for K  has to equate the ratio of the input prices: 

( )1 K e

E r

α
α
−

= .        (A.3) 

Using the variable input requirements function ( ) 1,E Q K K Qα βα −−=  that gives the amount of 

energy needed to transport Q  along that pipeline, one can rearrange (A.3) to define a function that 

gives the long-run cost-minimizing amount of capital stock needed to transport the output Q : 

( ) ( )

1

1

e
K Q Q

r

α

βα
α

−
 

=   − 
,       (A.4) 

The long-run total cost function is ( ) ( ) ( )( )+ ,C Q rK Q eE Q K Q=  and thus: 

( )
( )

1

1
1

r e
C Q Q

α α
β

ααα α

−

−=
−

.       (A.5) 

Appendix B – Short-run costs 

A review of short-run cost concepts 

Assuming a fixed amount of capital input K , the short-run total cost function is:  

( ) ( ),KSRTC Q rK eE Q K= + ,      (B.1) 

where ( ) 1,E Q K K Qα βα −−=  is the variable input requirements function. As 1β α> −  for the gas 

pipeline, this function is monotonically increasing and convex.  

The short-run marginal cost function is:  

( ) ( ),K
QSRMC Q eE Q K= .       (B.2) 

where ( ),QE Q K  denote the derivative of the input requirement function with respect to the output 

variable.  

The short-run average cost function is:  
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( ) ( ),K E Q KrK
SRAC Q e

Q Q
= + .      (B.3) 

With 8 11α =  and 9 11β = , this twice-differentiable function verifies ( )0
lim K

Q
SRAC Q+→

= +∞ , 

( )lim K
Q SRAC Q→+∞ = +∞  and is strictly convex.7 Hence, the short-run average cost curve has the usual U 

shape. Because of the strict convexity, the short-run average cost function has a unique minimum. At 

that output level, the short-run average cost equals the short-run marginal cost.8 We let Q  denote the 

output at which the short-run average cost is minimal, i.e. ( )
0

Min K

Q
Q SRAC Q

>
= . For any output Q  

lower (respectively larger) than Q , the short-run average cost ( )KSRAC Q  is larger (respectively lower) 

than the short-run marginal cost ( )KSRMC Q . 

Discussion  

We now consider the infrastructure that has been optimally designed to transport the output 0Q  at 

minimum long-run cost by installing the amount of capital stock ( )0 0K K Q= , and aim at comparing the 

design output 0Q  and the average-cost-minimizing output Q  on that specific pipeline system.  

Recall that Q  is such that the short-run average cost ( )0KSRAC Q  equals the short-run marginal cost 

( )0KSRMC Q , that is:  

( ) ( )00
0

,
,Q

E Q KrK
e eE Q K

Q Q
+ = .      (B.4) 

Using ( ) 1,E Q K K Qα βα −−=  and simplifying, one obtains: 

( )
( )

1
1

0

1

1

r
Q K

e

α
β

βα
β α

−

 −
=   + − 

.       (B.5) 

                                                 
7 Remark that its second derivative equals ( )3 8 32 rKQ eK− −+  which is positive for any 0Q > . 

8 Proof: The gradient of KSRAC w.r.t. Q  equals ( ) ( ),K
QSRAC Q eE Q K Q − +  , that is using (B.2) 

( ) ( )K KSRAC Q SRMC Q Q − +  . 
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Using (A.4), one can directly obtains the design output 0Q  as a function of the capital stock that has 

been installed:  

( )
1

1

0 0

1r
Q K

e

α
β

βα
α

−

 −
=  
 

.       (B.6) 

Equations (B.5) and (B.6) together indicate that the ratio 0Q Q  is entirely determined by the 

technological parameters α  and β : 

1

0 1

Q

Q

α
βα

β α

−

 =  + − 
.        (B.7) 

With 8 11α =  and 9 11β = , this ratio indicates that 3
0 04 3 1.1006Q Q Q= ≈ . It should be noted that 

for any output lower than Q , the short-run average cost is larger than the short-run marginal cost.  
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Insights for costs and rate-of-return regulation”  

 
Florian PERROTTON      Olivier MASSOL 

 

********* 

This technical appendix is organized as follows. Section 1 summarizes the assumptions 

and introduces the notation. Section 2 reviews the standard cases of a monopoly and a 

social planner. Section 3 examines the case of rate-of-return regulation and gives a concise 

presentation of Klevorick (1971) and Callen et al. (1976) who were the first to analytically 

examine the economics of rate-of-return regulation for a Cobb-Douglas technology. 

Section 4 details the ratios presented in the paper.   

********* 

1. Assumptions and notations 

Technology 

We consider the simple point-to-point pipeline infrastructure studied in our paper and assume the 

Cobb-Douglas production function: 1Q K Eβ α α−= , where 8 11α =  is the capital exponent parameter and 

9 11β =  is the scale coefficient.  

From that production function, one can define ( ) 1,E Q K K Qα βα −−=  the variable input requirements 

function that gives the amount of energy needed to transport the output Q  on a pipeline infrastructure 

that has a given fixed amount of capital input K . We let ( ),QE Q K  (respectively, ( ),KE Q K ) denote the 

derivative of the input requirement function with respect to the output (respectively, the capital) 

variable. With our technology parameters, ( ), 0QE Q K >  and ( ), 0KE Q K < .  

Input prices 

We let e  denote the market price of the energy input and r  denote the market cost of capital faced 

by the firm. 

Cost function 

Following the argumentation presented in Appendix A of the paper, the long-run cost-minimizing 

amount of capital stock needed to transport the flow Q  is: 
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( ) ( )

1

1

e
K Q Q

r

α

βα
α

−
 

=   − 
,       (1) 

The long-run total cost function is ( ) ( ) ( )( )+ ,C Q rK Q eE Q K Q=  and thus: 

( )
( )

1

1
1

r e
C Q Q

α α
β

ααα α

−

−=
−

.       (2) 

Demand 

The inverse demand function is: ( )P Q A Q ε−= , where A  is a constant and 1 ε  is the absolute value 

of the price elasticity of demand. Here, it is assumed that: 1ε <  so that the total revenue obtained by a 

monopolist producing zero output is zero and that 1ε β> −  so that the demand schedule always 

intersects the marginal cost schedule from above.1 

For notational convenience, we follow Callen et al. (1976) and introduce three parameters: (i) 

1γ β ε≡ + − , (ii) ( )( )1 1e Aδ β ε α≡ − −   , and (iii) ( )( )1 1η β ε α≡ − − − . 

2. The cases of a monopoly and of a social planner 

This section briefly reviews the standard outcomes obtained under two polar cases: (i) the profit-

maximizing unregulated monopoly that charges a non-discriminatory price; and (ii) the hypothetical 

case of a welfare-maximizing social planner that behaves so as to maximize the sum of the producers’ 

and consumers’ surpluses (i.e., the net social welfare) while ensuring that the firm obtains zero 

economic profit. The latter case mimics the situation studied in Boiteux (1956).2  

These two cases can be modeled using the optimization problems presented in Table TA-1. For 

concision, we omit the straightforward derivations of the first-order conditions and simply report the 

optimal decisions.  

Note that in both cases: (i) the optimal amount of capital stock equals the cost-minimizing amount, 

that is, ( )M MK K Q=  and ( )a aK K Q= ; and (ii) production is cost efficient as the equations  

( ) ( ),M M M MC Q rK eE Q K= +  and ( ) ( ),a a a aC Q rK eE Q K= +  hold. Note also that, for the social planner, 

substitution of the optimal decisions aQ  and aK  in the zero profit condition (5) gives 

( ) ( ) 0a a aP Q Q C Q− =  which means that the output is set at a level such that the price equals the long-

run average cost. 

 
                                                 
1 These restrictions together impose that 1 ε  is in the range (1,5.5) which is not a concern in our application. 

2 For concision, we omit the first-best solution that consists of solely maximizing the sum of the producers’ and consumers’ 

surpluses without paying attention to the firm’s profitability. As this first-best solution entails establishing an output level for 

which price equals the long-run marginal cost, it compels the pipeline operator to operate at a loss, which is not realistic. 
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Table TA-1. The optimal decisions taken by a profit-maximizing unregulated monopoly and a 
welfare-maximizing social planner providing zero profit to the firm 

 The unregulated monopoly 
The welfare-maximizing planner that provides zero-

profits to the firm 

Optimization 

program 

,Q
Max

K
( ) ( ) ( ),M Q P Q Q rK eE Q KΠ = − −        (3) 

K,Q
Max ( ) ( ) ( )

0
,

Q
W Q P q dq rK eE Q K= − −∫  

  s.t.    ( ) ( ), 0P Q Q rK eE Q K− − =  

(4) 

 

(5) 

Solution:     

   Output 
( )

1
11 1

M

A
Q

r e

α α γε α α
β

− − −   =     
     

 (6) 

1
1

1
aQ A

r e

α α γα α − −   =     
     

 (7) 

   Capital 
( ) ( )

1

1M M

e
K Q

r

α
βα

α

−
 

=   − 
 (8) 

( ) ( )
1

1a a

e
K Q

r

α
βα

α

−
 

=   − 
 (9) 

Note: The objective function (3) is the firm’s profit, i.e.: the difference between the total revenue ( )P Q Q  and the sum of 

the capital cost rK  and the energy cost ( ),eE Q K . The objective function (4) is the net social welfare defined as the 

sum of the consumer surplus ( ) ( )
0

Q
P q dq P Q Q−∫  and the producer’s surplus ( ) ( ),P Q Q rK eE Q K− − . The 

constraint (5) states that the firm is compelled to obtain zero economic profit. 

Callen et al. (1976) define Ms  the monopolist’s rate of return on invested capital which is the ratio 

of: the accounting profit derived from the production of the output MQ  (that is: 

( ) ( ), M M M MP Q Q eE Q K− ), and MK  the profit-maximizing capital stock: ( ) ( )1 1Ms rβ ε α α≡ − − −   . 

3. Rate-of-return regulation 

We now assume that the infrastructure is provided by a private monopoly that is subject to rate-of-

return regulation. This section briefly presents the theoretical literature on rate-of-return regulation for 

the special case of a Cobb-Douglas technology (Klevorick, 1971; Callen et al., 1976). It first reviews 

the behavior of the regulated monopoly before discussing the identification of a socially desirable rate 

of return. 

3.1 The behavior of the regulated monopoly 

The regulated monopoly is allowed to earn a fixed and exogenously-determined rate of return s  

that is lower than the rate of return Ms  obtained by an unregulated monopolist (i.e., Ms s< ).  

The rate-of-return constraint stipulates that the monopoly’s accounting profit (i.e., the total revenue 

( )P Q Q minus ( ),eE Q K  the cost of the variable input) cannot exceed the allowed return on invested 

capital sK . As the condition Ms s<  holds, the rate-of-return constraint is binding: 

( ) ( )   ,    P Q Q e E Q K s K− = ,         (10) 
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The regulated firm is allowed to choose any combination of inputs (K and E ) and output (Q) that 

jointly verifies the production function equation, and the rate-of-return constraint. Assuming profit 

maximization, the behavior of the regulated monopoly is thus determined by the following program: 

,Q
Max

K
 ( ) ( ) ( )       ,Q P Q Q r K e E Q KΠ = − −   (11) 

s.t. ( ) ( )   ,     P Q Q e E Q K s K− =       

 0K ≥  , 0Q ≥ .  

If the allowed rate of return is lower than the market cost of capital (i.e., s r< ), profit maximization 

involves a corner solution: the firm’s optimal decision is to withdraw from the market.  

One must thus concentrate on the situation s r≥ . As shown in Klevorick (1971), the firm’s optimal 

decisions must jointly verify the rate-of-return constraint (10) and the condition:  

( ) ( ) ( ) ( )'    ,  0Qs r P Q Q P Q e E Q K − + − =  ,      (12) 

One can first examine the case s r>  where the allowed rate of return is larger than the market price 

of capital. The condition (12) indicates that the marginal revenue ( ) ( )'P Q Q P Q+  must equal the 

regulated marginal cost ( ),QeE Q K  which is the marginal cost of producing an additional unit of output 

when K  is set at the level required to satisfy the rate-of-return constraint (10). Using that condition and 

the rate-of-return constraint (10), Callen et al., (1976) obtain the optimal decisions ( ),R RK Q  for a Cobb-

Douglas production function and then evaluate: RC  the cost incurred by the regulated operator and RW  

the net social welfare. Their results are summarized in Table TA-2. 

Table TA-2. The optimal decisions taken by a regulated monopoly (case s r> ) 

Output 
1R

A e
Q

s

α γ

α
δ
δ

− =   
 (13) 

Capital 
( )1

R RK Qα α η αδ −=  (14) 

Cost 
( )1 1

R R R

e
C r Q Qα α η α εδ

δ
− −= +  (15) 

Net social 

welfare 
( )1

1R R R RW P Q Q C
ε

= −
−

 (16) 

 

In the specific case s r= , the allowed rate of return equals the market price of capital and the 

regulated firm is constrained to make at most zero economic profit. Klevorick (1971) highlights that the 

behavior of the regulated monopoly is indeterminate: the three combinations ( )0,0 , ( ),a aK Q , and 
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( ),R RK Q  evaluated with s r=  yield zero economic profit. To avoid that indeterminacy, we assume 

hereafter that the rate effectively implemented by the regulatory authority will be no less than r  plus an 

infinitesimally small and positive increment. This rule imposes the choice of the combination ( ),R RK Q . 

3.2 The socially desirable rate of return 

Klevorick (1971) and Callen et al. (1976) both examine the determination by a regulator of the fair 

rate of return s that maximizes the net social welfare given the regulated firm’s reactions to that rate. 

They consider the two-level optimization problem: 

Max
s

 ( ) ( ) ( )
0

       ,
Q

W s P q dq r K e E Q K= − −∫   (17) 

s.t. ,
Max

K Q
  ( ) ( ) ( )       ,Q P Q Q r K e E Q KΠ = − −   

 s.t. ( ) ( )   ,     P Q Q e E Q K s K− =   

  0K ≥  , 0Q ≥ .  

We let Rs  denote the solution to that program. The discussion above has shown that for a given rate 

of return s  with Ms s r> > , the unique solution to the lower-level problem is the pair ( ),R RK Q  defined 

in Table TA-2 which is parameterized by s . Callen et al. (1976) thus reformulate the problem as a 

single-variable optimization problem:3 

Max
s

 ( ) ( )( ) ( ) ( ) ( )( )
0

       ,
RQ s

R R RW s P q dq r K s e E Q s K s= − −∫ . (18) 

The first-order condition for optimality yields the optimum value of the allowable rate of return Rs : 

( )( )

2

2
1 1

R

r
s

η
α β α ε

=
 − − −
 

.          (19) 

Note that, by assumption, the condition 0 1ε< <  holds, so the socially desirable rate of return Rs  is 

lower than Ms  the one obtained by the unregulated monopolist.  

The rate Rs  in (19) is valid if and only if, it verifies Rs r> , that is, if the elasticity and technological 

parameters are such that ( )( )22 1 1η α β α ε > − − −
 

. If that is not the case, the authority’s best 

decision is to set Rs  equal to r  (plus an infinitesimally small and positive increment). 

                                                 
3 Note that this reformulation is rendered possible by their derivation of an analytical solution of the lower-level problem for 

the specific case of a Cobb-Douglas specification for the production function.  
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4. Static comparisons 

To assess the performance of rate-of-return regulation, Callen et al. (1976) propose a series of ratios 

that are detailed in Table TA-3. These ratios are entirely determined by the ratio s r , the demand 

elasticity and the technology parameters. 

These ratios respectively compare:  

• the output levels decided by: a private monopoly MQ , a social planner applying the 

average-cost-pricing rule aQ  and a regulated monopoly RQ ;  

• the cost RC  incurred by the regulated firm and ( )RC Q  the cost that would have been 

incurred by a cost-minimizing firm producing the same output RQ  to assess the magnitude 

of the cost-increases caused by the Averch-Johnson effect (Averch and Johnson, 1962). 

• the gain in net social welfare resulting from the regulation of a private monopoly 

( )R MW W−  versus ( )a MW W−  the gain in net social welfare resulting from the 

implementation of a social planner applying the average-cost-pricing rule in a 

monopolistically-controlled industry. 

Table TA-3. The performance ratios 

Output 

( )
( )

1

1

1
R

a

Q r

Q s

α γ
γεη

ε α β
   −

=     −   
 

Output 

( )1
R

M

Q r

Q s

α γ
η
ε α

 
=   − 

 

Cost 

( ) ( ) ( )
( )

1
1

1
1

R

R

C s r

C Q r s

αα
ε α ηα α

η ε α

−
  −

= − +    −    
 

Net social 

welfare 

( )
( )

R M

a M

W W A

W W B

−
=

−
 

Where   
( )

11

1

1 1 1

1

1 1 1

1

R R R

M R M

Q C Q

Q C Q Q

A

ε βε β
γ γ

ε β
γ γ

ε ε
ε β β

ε ε
ε β β

−−

−

 
      − − −       −         ≡ 

     − − − −    −      

 

       and     

1

1 1 1

1 1
B

ε β
γ γε ε ε

ε ε β β

− 
   − − ≡ − −    − −      

 

 



Technical appendix 

Technical appendix - 7 

 

Note: As the derivation of the ratio ( ) ( )R M a MW W W W− −  is not detailed in Callen et al. (1976), we 

briefly explain how it can be reconstructed. The net social welfare MW  and aW  are obtained using the 

formula: ( ) ( )11W A Q C Qεε −= − −   . 

Recall that aQ  is the output such that price equals the average cost: ( ) ( )1

a aA Q C Q
ε− = . So, the net 

social welfare is: ( ) ( )1a a aW P Q Q ε ε= −   . 

Remarking that ( )( )1M aQ Qγ ε β= −  and using the relation ( ) ( )1

a aA Q C Q
ε− = , the net social welfare 

obtained in case of a monopoly is:  

( )
1

1 1 1
.

1M a aW P Q Q

ε β
γ γε ε

ε β β

− 
   − − = −    −     

 

,               (20) 

Under rate-of-return regulation, the net social welfare RW  is defined in (16) and can be rearranged 

as follows:  

( )

1

1
R M R R M

R a a
M a R M a

Q Q C Q QA
W Q C Q

Q Q C Q Q Q

ε

ε

−
   

= × × − × ×   −    
.              (21) 

As the output aQ  is such that ( ) ( )1

a aA Q C Q
ε− = , the net social welfare RW  can be rewritten so as to 

be directly proportional to the total revenue ( )a aP Q Q  obtained by the firm if average cost pricing is 

implemented: 

( ) ( )

11
1 1 1

.
1

R R R
R a a

M R M

Q C Q
W P Q Q

Q C Q Q

ε βε β
γ γε ε

ε β β

−− 
      − − = −       −         

.      (22) 
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